

FICHA TÉCNICA

ALUMINIO ALEACIÓN ZINC 7075

COMPOSICIÓN QUÍMICA

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti		Otros	AI
Min. Máx.	0,40	0,50	1'20 2,00	0,30	2,10 2,90	0,18 0,28	5,10 6,10	0,20	Zr + Ti 0,25	0,15	Resto

EQUIVALENCIAS INTERNACIONALES

USA	ESPAÑA	FRANCIA	ALEMANIA	G.B.	SUECIA	SUIZA	CANADA	ITALIA
A.A.	U.N.E.	AFNOR	DIN (1712-1725)	B. S.	S.I.S.	VSM	ALCAN	UNI
7075	L-3710 38.371	A-Z5 GU	AlZnMgCu1,5 3.4365	L160		Perunal 215	75 S	3735

PROPIEDADES MECÁNICAS

BRONCESVAL

ESTADO	Carga de rotura	Límite elástico	Alargamiento	Resistencia a la	DUF	REZA
	Rm N/mm²	Rp 0.2 N/mm ²	5,65 V So	Cizalladura N/mm²	BRINELL (HB)	VICKERS
0	280	150	10			
T6	540	480	11	330	145	157

PROPIEDADES FÍSICAS

Módulo elástico N/mm²	Peso específico gms/cm ³	Temperatura de fusión ° C	Coeficiente de dilatac, lineal (20°-100°) 10-6/°C	Conductividad térmica W/m °C	Resistencia eléctrica Micro Ohm cm.	Conductividad eléctrica % IACS	Potencial de disolución V.
72.000	2'80	475-630	23'5	130	5'2	34	0'81

RADIOS DE PLEGADO

ESTADO	COEF	0'4-0'8 m/m	0'8-1'6 m/m	1'6-3'2 m/m	3'2-4'8 m/m	4'8-6 m/m	6-10 m/m	10-12 m/m
0	К	0	1	1	1'5	2'5	3'5	_
Т6	К	4'5	5'5	6'5	7	8	-	_
4	К			8				

PARA CALCULAR EL RADIO MÍNIMO DE PLEGADO MULTIPLICAR EL ESPESOR DE LA CHAPA POR EL COEFICIENTE K.

FICHA TÉCNICA

ALUMINIO ALEACIÓN ZINC 7075

APTITUDES TECNOLÓGICAS

SOLDADURA		MECANIZACIÓN	En estado: 0	En estado: T6
—A la llama	(B)	—Fragmentación de la viruta	(B)	(B)
—Al arco bajo gas argón	(M)	-Brillo de superficie	(B)	(B)
-Por resistencia eléctrica	(B)			
—Braseado	(R)			
COMPORTAMIENTO NATU	RAL	EMBUTICIÓN	En estado: 0	
-En ambiente rural	(R)	—Por expansión	(M)	
-En ambiente industrial	(R)	Embutición profunda	(M)	
-En ambiente marino	(M)			
—En agua de mar	(M)			
ANODIZADO	ANODIZADO			MB: Muy buena
—De protección	(B)	—En estado: (—)		B: Buena
—Decorativo	(R)	—En estado: (—)		R: Regular
-Anodizado duro	(MB)			M: Mala, evitar

TRATAMIENTOS TÉRMICOS

Puesta en solución: 465° C ± 5° C. Temple en agua fría (40° C máx.)

Maduración artificial: Estado T6, de 12 a 16 horas a 135° C ± 3° C.

Recocido: 30 min. a 2 horas a 375°-410° C seguido de enfriamiento lento.

Forja: 400° a 450° C. Recomendado 430° C.

PRODUCTOS

CHAPAS, PLACAS, BARRAS

APLICACIONES Y USOS TÍPICOS

SE TRATA DE LA ALEACIÓN CON CARACTERÍSTICAS MÁS ELEVADAS DENTRO DE LOS ALUMINIOS. EL DESARROLLO DE ESTA ALEACIÓN HA HECHO POSIBLE SU UTILIZACIÓN EN CAMPOS HASTA AHORA RESERVADOS A LOS ACEROS.

SE APLICA EN ARMAMENTO, INDUSTRIA DEL AUTOMÓVIL-TORNILLERÍA, BASTONES DE ESQUÍ, CAÑAS DE PESCA, FLECHAS, MOLDES DE SOPLADO, PIEZAS ESTAMPADAS PARA ALPINISMO, ETC.